





## Generators for **Critical Power Supply**

YANMAR





HGY Series Generators available in Open Skid and Soundproof versions:

## YANMAR **COMPLETE RANGE**





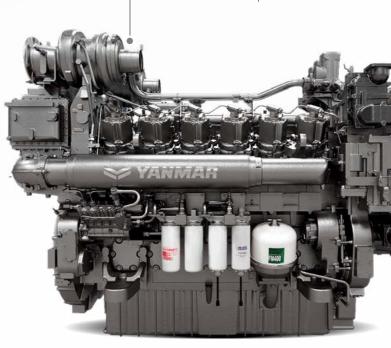
 $\underline{()}$ 

Working in progress: Gas and Hydrogen Engines.



Hospitals and medical centers rely on backup generators to ensure the continuous operation of vital equipment such as ventilators, life support systems, and medication refrigeration.




Data centers require reliable, rapid-response power to protect infrastructure and prevent disruptions that could compromise data.

#### **NEW** GENERATORS **UP TO 3500 KVA** WITH YANMAR **ENGINE FOR CRITICAL POWER** SUPPLY.

The new GY engine family has born to be a key player in the power generation industry and is ready for alternative fuels like HVO, gas and hydrogen.

**HIMOINSA** and **YANMAR: A Strategic Partnership for Critical Power** Solutions

HIMOINSA, part of the Yanmar Group, is a manufacturer of Power Technology Solutions who design and produce generator sets, battery storage systems, lighting towers, automatic transfer switches, monitoring controls and accessories, for backup and continuous power supply. The company launches the HGY Series, a new power solutions that will take the world by storm and become



Electronically

controlled engines

## 1250 kva 3500 kva **EUROPEAN AND JAPANESE TECHNOLOGY**

an undisputed leader in the field of power generation for mission-critical projects.

## **Sustainability**

Compatible with alternative fuels such as HVO, gas, and hydrogen, HGY generators significantly reduce emissions, aligning with global sustainability goals and contributing to the Net Zero strategy.













The HGY series generators are equipped with the Yanmar engines from the GY175L engine family, which includes various models (12, 16, and 20 cylinders).



### Exceeding 1500 kW

Yanmar and HIMOINSA have developed this compact, highperformance engine in the power range above 1500 kW.

It features optimized fuel consumption (FOC) and ensures minimal operating costs (OPEX).

kW

500



1.500

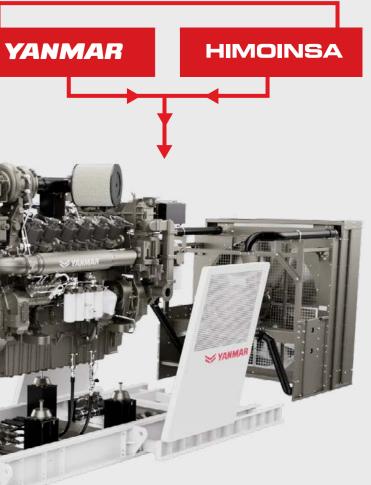


HGY is a new family of high speed engine with common rail injection system. This engine combines the unique combustion technology for high-speed engines and the reliability technology for medium-speed engines.



Years of Yanmar's high-speed engines history, first time to

exceed 1500 kW.


**2001** 



With over a century of experience, particularly in the marine and diesel engine sectors, and more than 40 years of developing high-speed engines, YANMAR, alongside the HIMOINSA team (its strategic and tactical partner in the project), has developed this compact, highperformance engine to meet market demands in the power range exceeding 1500 kW for the power generation market. It is distinguished by its optimization of fuel consumption (FOC) and guarantees minimal operating costs (OPEX).

The collaboration between Himoinsa's engineers, power generation experts and Yanmar's experience has been essential for integrating advanced technologies and innovative

HIMOINSA



solutions. Utilizing modern methodologies and cutting-edge engineering tools, this multidisciplinary team has overcome key technical challenges to create a reliable and efficient product that meets the demands of today's global market.

This innovative approach to power solution development combines YANMAR's extensive experience in engine design and manufacturing with HIMOINSA's specialization in power generation. Together, they are driving critical operations worldwide with state-of-the-art technologies and their mutual commitment to excellence.

## $\mathbf{01}$ Common-rail fuel injection Systems and High-Pressure Pump:

injection pressure for maximum efficiency and optimizes the combustion pressure curve

## **High Power Density:**

exceptional performance in terms of emissions and power density (up to 37.9kWm/L). The high specific power density can reduce footprint.

# **Single Cylinder**

The design of the piston head and the fluid analysis is key for the engine efficiency and

for the engine efficiency and performance. Yanmar has spent thousands of engineering hours in this stage of the development.

# **Fast Response:**

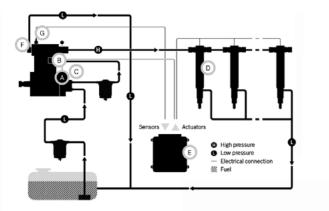
Fuel injection makes a huge difference in the power generation application where the speed of response is vital. The ECU can react to sudden changes in speed in milliseconds. Engine starting in less than 8 seconds. This engine can perform within ISO8528-5 G3 class conditions

HIMOINSA

## **Intuitive Engine Control Unit** (ECU):

physical parameters for optimal control of the injection system. The control system includes integrated, intuitive, operable diagnostic software, which allows remote monitoring of the engine and generator.




HIMOINSA POWERED BY

# BES

## Engine Technical Data

| Application         |       | 50Hz                         | 60Hz                   |  |
|---------------------|-------|------------------------------|------------------------|--|
| Cylinders           | [-]   | V12                          | 2 / V16 / (V20)        |  |
| Bore                | [mm.] |                              | 175                    |  |
| Stroke              | [mm.] |                              | 215                    |  |
| Displacement        | [L]   |                              | 62.1 / 82.7            |  |
| Fuel Injection type |       | Electronic inje              | ction with common rail |  |
| Air charge system   |       | Turbocharged and intercooled |                        |  |
| Oil system          |       | Closed crankcase type        |                        |  |
| Cooling system      |       | Two wate                     | er circuits (HT+LT)    |  |
| Bank angle          | [deg] |                              | 60                     |  |
| Engine speed        | [rpm] | 1500                         | 1800                   |  |
| ВМЕР                | [MPa] | ι                            | Jp to 2.84             |  |
| Piston speed        | [m/s] | I                            | Up to 12.9             |  |
| FIE                 | [-]   | Modular c                    | ommon rail system      |  |

## Modular common rail system



The Modular Common Rail system uses a high-pressure pump that feeds a common rail, from which the injectors atomize the fuel at precise moments controlled by the ECU, enhancing efficiency, reducing emissions, and simplifying maintenance.

# High-pressure pump with integrated storage volume Intake metering valve Gear pump Injector Electronic engine control unit Pressure relief valve Pressure sensor

## **Power density | Reduced size**

How to achieve high power density on an engine? High pressure common rail injection is key as well as a good design of the combustion chamber. The common rail system of the GY engine is capable of

injection pressures of up to 2200 bar.. To withstand the high temperatures in the combustion chamber Yanmar has taken special attention in the cooling design and lubrication system.

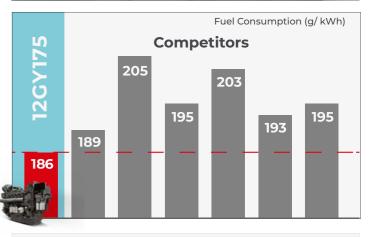


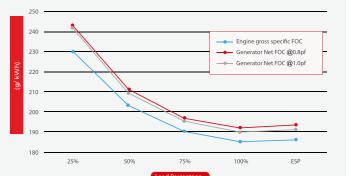
#### Estructure of common rail injector

## Fuel Consumption Best-in-class in the market

Efficiency is the main Himoinsa and Yanmar objective so the HGY generators has been designed to ensure the best optimized fuel consumption of the market thanks to its new common-rail high pressure fuel injection system, its piston design and its high power density. This FOC ensures saving cost, emissions reduction and also great autonomy, so there are a lot of reasons to consider the HGY Series as one of the most efficient and competitive product in the market.

## Service intervals and extended maintenance services.





#### Up to 500 hours for oil changes and a major overhaul interval of up to 30,000 hours.

The new design of these engines simplifies maintenance, as the engine consumables are accessible from one side. Many parts are compatible across the V12, V16, and V20 models, reducing the spare parts inventory. The HGY Series offers extended service intervals. It features a top overhaul interval of 10.000 hours and a major overhaul interval of up to 30,000 hours for continuous operation.











Engine consumables located on one side

HIMOINSA also develops a remote management platform that optimizes performance and minimizes downtime through alerts and real-time monitoring.





Discover how the HGY series redefines the standards for mission-critical generators and becomes the reliable choice for essential infrastructures.

01 High performance (load impacts, start time)

Full compl with ISO 8

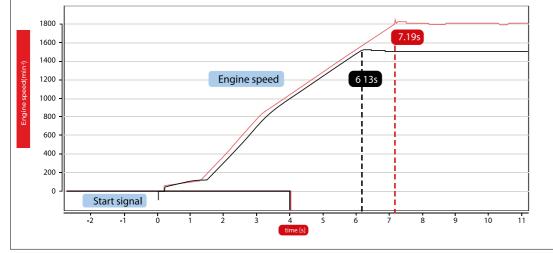
G3 CL

R

04

Fuel Consumption **Best-in-class in** the market

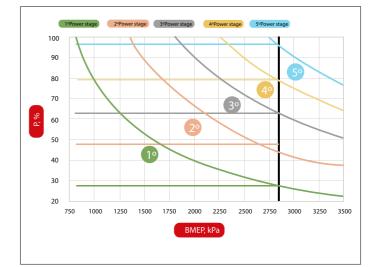



## 05 Flexible for multiple fuel use

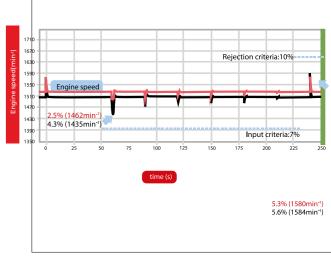












• Engine with heater running but not hot.

• Common rail discharged.

• Low fuel pressure.



Full compliant with ISO8528-5 G3 CLASS

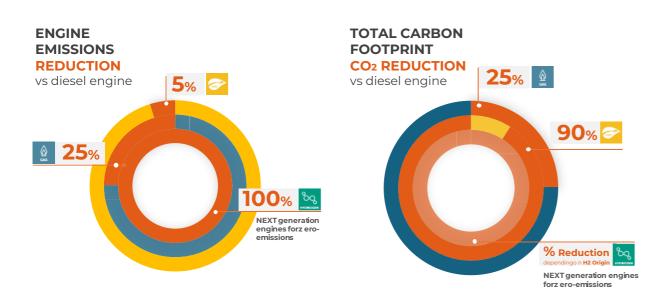




Including 100% load rejection (Frequency variation <10%)



# sustainabilitv

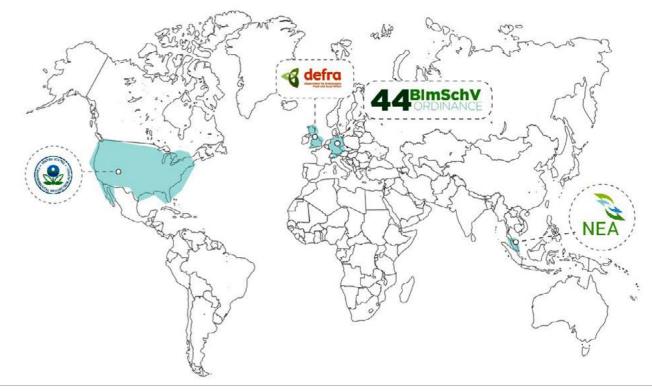

## **Critical power, low** emissions, sustainable

# future. New energy-efficient, low-emission,

In terms of sustainability, the HGY series has been meticulously configured to support the future adoption of alternative fuels such as HVO, gas, and hydrogen, a significant step toward

and full-power solutions

environmental responsibility that will assist end-users in their strategy to achieve net zero. The HGY generators incorporate exhaust gas after-treatment systems to comply with European, German,




| Power range         | by fuel typ | e    |      |       |               |         |               |
|---------------------|-------------|------|------|-------|---------------|---------|---------------|
| Block               |             | Di   | esel | 🊊 Gas | (In progress) | 🔀 Hydro | (In progress) |
| V12                 |             | 1250 | 2250 | -     | -             | 800     | 1200          |
| V16                 | kW          | 2250 | 3000 | 1500  | 2000          | 1200    | 1600          |
| V20<br>*Future plan |             | 3000 | 3500 | 2000  | 2550          | 1600    | 1950          |

and UK regulations for medium combustion plants operating over 300 or 500 hours. The new series also includes a Tier 2 EPA-certified version for emergency applications in the United States, as well as compliance with NEA regulations in Singapore.

The HGY series offers generators

with various power ratings to suit all applications, whether for emergency (ESP), prime (PRP), data center power (DCP), continuous (COP), or limitedtime power (LTP), ensuring the best solution for healthcare, data centers, capacity markets, and other mission-critical sectors.



This new product family has been designed to ensure emissions reduction, and Himoinsa will provide the Environmental Product Declaration (EPD) to offer comprehensive information on the and implement low-carbon strategies.

POWER RESPONSIBILITY



The new HGY marks the beginning of a new chapter in the history of critical power generation.

environmental impact at each stage or life cycle of the product. This will help our customers make more sustainable purchasing decisions





# **Mission Critical**

## **Critical Infrastructure Applications**

The reliability of the HGY series gensets makes them the preferred choice for critical infrastructure where uninterrupted power supply is vital.

These gensets are engineered to perform in missioncritical environments where power failure is not an option, such as data centers, medical facilities, and strategic industrial plants.



## Comprehensive power systems for data centres

HIMOINSA's HGY Series offers comprehensive power systems for data centres, ensuring high reliability and consistent performance. These generators minimise failure risks and maximise uptime, making them ideal for mission-critical environments. With sustainability in focus, HGY generators support renewable fuels like HVO, reducing CO2 emissions. Future plans include gas and hydrogen solutions to further cut the carbon footprint. The series ensures security with a response time of under eight seconds, and its acoustic engineering reduces noise pollution. Customised planning and support optimise power efficiency and ensure uninterrupted operations in data centres.



## Continuous power for industrial production

The HIMOINSA HGY series ensures continuous power supply for industrial production, maximizing performance and reducing unplanned downtime. These generators are designed to optimize power in industries like food processing, chemicals, and pharmaceuticals, providing continuous and emergency power solutions. With advanced management and control systems, they offer redundant start-up and parallel operation options. Additionally, they minimize noise with advanced soundproofing technologies, meeting industry standards. Running on biofuels like HVO, they reduce operational costs and emissions, ensuring 24/7 global technical support for maximum efficiency.



## Secure power solutions for healthcare facilities and hospitals

The HGY Series provides secure and efficient power solutions for healthcare facilities, ensuring continuous power for critical services where lives depend on it. HGY generators offer rapid response, guaranteeing power restoration in less than eight seconds, preventing interruptions to essential medical equipment. HIMOINSA manufactures complete power systems, automatic transfer switches, and accessories, ensuring seamless integration with local power grids. With parallel solutions, redundant start-up systems, and noisereduction features, HGY ensures safety and efficiency. Designed for sustainability, these generators operate on biofuels like HVO, reducing emissions and supporting a responsible healthcare sector.



In remote mining environments

where operational continuity is essential, the soundproof generators

of the CHY series provide a reliable and efficient solution. Designed to operate under extreme conditions, these generators minimize

noise, helping to comply with

ensurina a comfortable work

environment. Their robustness

and responsiveness guarantee the

equipment, vital for production and

continuous operation of critical

safetv in minina

environmental reaulations while

In the realm of data centers, GHY series generators are the preferred choice for missioncritical applications. Their robust and efficient design ensures a reliable power source, keeping IT systems and storage operations running without interruptions. Equipped with advanced technology, they allow for constant monitoring and efficient energy management, ensuring optimal performance and continuity in highly demanding environments.

## 24/7 Continuous Supply - Reduced operating costs and low emissions

OSPITA

HGY generators provide specialized power solutions for the mining sector, ensuring continuous 24/7 supply in challenging environments such as high altitudes and extreme climates. With a response time of under eight seconds and synchronized fleets, they ensure uninterrupted performance. Equipped with European-Japanese technology, they excel in durability and robustness, with anti-vibration and soundproof systems for harsh conditions. Their design allows easy transport and installation in difficult terrains. The Yanmar GY175L engine optimizes fuel consumption, reducing operating costs. HIMOINSA offers remote monitoring and maintenance to maximize efficiency and minimize downtime.

DCP

LTP

ESP

**50** Hz

|  | мо | DEI |
|--|----|-----|
|  |    |     |

| Generator        | Engine        |
|------------------|---------------|
| HGY-1500 D5 DCP  | 12GY175L.DF2F |
| HGY-1750 D5 DCP  | 12GY175L.DF3F |
| HGI-1750 D5 DCP  | 12GY175L.DL3F |
| HGY-2100 D5 DCP  | 12GY175L.DF4F |
| HGY-2350 D5 DCP  | 12GY175L.DF5F |
| HGY- 2500 D5 DCP | 16GY175L.DF3F |
| HGY- 2700 D5 DCP | 16GY175L.DF4F |
| HGY- 2750 D5 DCP | 16GY175L.DF5F |
| HGY- 3000 D5 DCP | 16GY175L.DF6F |

| HGY-1500 D5 LTP  | 12GY175L.LF2F | 1200 | 1500 | Fuel consumption optimized |
|------------------|---------------|------|------|----------------------------|
|                  | 12GY175L.LF3F |      |      | Fuel consumption optimized |
|                  | 12GY175L.LN3F | 1400 | 1750 | NEA                        |
| HGY-1750 D5 LTP  | 12GY175L.LE3F | 1400 | 1750 | EPA Tier2 equivalent       |
|                  | 12GY175L.LL3F |      |      | Low NOx                    |
|                  | 12GY175L.LF4F |      |      | Fuel consumption optimized |
| HGY-2100 D5 LTP  | 12GY175L.LN4F | 1663 | 2079 | NEA                        |
|                  | 12GY175L.LE4F |      |      | EPA Tier2 equivalent       |
|                  | 12GY175L.LF5F |      |      | Fuel consumption optimized |
| HGY-2350 D5 LTP  | 12GY175L.LN5F | 1871 | 2338 | NEA                        |
|                  | 12GY175L.LE5F |      |      | EPA Tier2 equivalent       |
| HGY- 2500 D5 LTP | 16GY175L.LF3F | 2000 | 2500 | Fuel consumption optimized |
| HGY- 2700 D5 LTP | 16GY175L.LF4F | 2136 | 2670 | Fuel consumption optimized |
|                  | 16GY175L.LF5F |      |      | Fuel consumption optimized |
|                  | 16GY175L.LN5F | 0000 | 0750 | NEA                        |
| HGY- 2750 D5 LTP | 16GY175L.LE5F | 2200 | 2750 | EPA Tier2 Equivalent       |
|                  | 16GY175L.LL5F |      |      | Low Nox                    |
|                  | 16GY175L.LF6F |      |      | Fuel consumption optimized |
|                  | 16GY175L.LN6F | 2400 | 2000 | NEA                        |
| HGY- 3000 D5 LTP | 16GY175L.LE6F | 2400 | 3000 | EPA Tier2 Equivalent       |
|                  | 16GY175L.LL6F |      |      | Low Nox                    |

| COP | HGY-1250 D5 COP  | 12GY175L.CF1F | 1000      | 1250      | Fuel consumption optimized |
|-----|------------------|---------------|-----------|-----------|----------------------------|
|     | HGY-1500 D5 COP  | 12GY175L.CF2F | 1200      | 1500      | Fuel consumption optimized |
|     |                  | 12GY175L.CF3F |           |           | Fuel consumption optimized |
|     |                  | 12GY175L.CN3F | 1750      | NEA       |                            |
|     | HGY-1750 D5 COP  | 12GY175L.CE3F | 1400 1750 | 1400 1750 | EPA Tier2 equivalent       |
|     |                  | 12GY175L.CL3F |           |           | Low NOx                    |
|     | HGY- 2000 D5 COP | 16GY175L.CF1F | 1600      | 2000      | Fuel consumption optimized |
|     | HGY- 2250 D5 COP | 16GY175L.CF2F | 1800      | 2250      | Fuel consumption optimized |

| Generator        | Engine        | kWe    | kVA       | Emission                   |     |
|------------------|---------------|--------|-----------|----------------------------|-----|
|                  | 12GY175L.EF4F |        |           | Fuel consumption optimized |     |
| HGY-2100 D5 ESP  | 12GY175L.EN4F | 1663   | 2079      | NEA                        |     |
|                  | 12GY175L.EE4F |        |           | EPA Tier2 equivalent       |     |
|                  | 12GY175L.EF5F |        |           | Fuel consumption optimized |     |
| HGY-2350 D5 ESP  | 12GY175L.EN5F | 1871   | 2338      | NEA                        |     |
|                  | 12GY175L.EE5F |        |           | EPA Tier2 equivalent       |     |
|                  | 12GY175L.EF6F |        |           | Fuel consumption optimized |     |
| HGY-2600 D5 ESP  | 12GY175L.EN6F | 2080 2 | 2080 2600 | NEA                        |     |
|                  | 12GY175L.EE6F |        |           | EPA Tier2 equivalent       |     |
|                  | 16GY175L.EF5F |        |           | Fuel consumption optimized |     |
| HGY- 2750 D5 ESP | 16GY175L.EN5F | 2200   | 2200 2    | 2750                       | NEA |
|                  | 16GY175L.EE5F |        |           | EPA Tier2 Equivalent       |     |
|                  | 16GY175L.EF6F |        |           | Fuel consumption optimized |     |
| HGY- 3000 D5 ESP | 16GY175L.EN6F | 2400   | 3000      | NEA                        |     |
|                  | 16GY175L.EL6F |        |           | EPA Tier2 Equivalent       |     |
|                  | 16GY175L.EF7F |        |           | Fuel consumption optimized |     |
| HGY- 3250 D5 ESP | 16GY175L.EN7F | 2600   | 3250      | NEA                        |     |
|                  | 16GY175L.EE7F |        |           | EPA Tier2 Equivalent       |     |

| Р | HGY-1500 D5 PRP  | 12GY175L.PF2F  | 1200 | 1500 | Fuel consumption optimized |
|---|------------------|----------------|------|------|----------------------------|
|   |                  | 12GY175L.PF3F  |      |      | Fuel consumption optimized |
|   |                  | 12GY175L.PN3F  | 1400 | 4750 | NEA                        |
|   | HGY-1750 D5 PRP  | 12GY175L.PE3F  | 1400 | 1750 | EPA Tier2 equivalent       |
|   |                  | 12GY175L.PL3F  |      |      | Low NOx                    |
|   |                  | 12GY175L.PF4F  |      |      | Fuel consumption optimized |
|   | HGY-2100 D5 PRP  | 12GY175L.PN4F  | 1670 | 2088 | NEA                        |
|   |                  | 12GY175L.PE4F  |      |      | EPA Tier2 equivalent       |
|   |                  | 12GY175L.PF5F  |      |      | Fuel consumption optimized |
|   | HGY-2350 D5 PRP  | 12GY175L.PN5F  | 1873 | 2341 | NEA                        |
|   |                  | 12GY175L.PE5F  |      |      | EPA Tier2 equivalent       |
|   | HGY- 2500 D5 PRP | 16GY175L.PF3F  | 2000 | 2500 | Fuel consumption optimized |
|   | HGY- 2700 D5 PRP | 16GY175L.PF4F  | 2136 | 2670 | Fuel consumption optimized |
|   |                  | 16GY175L.PF5F  |      |      | Fuel consumption optimized |
|   |                  | 16GY175L.PN5F  |      | 0750 | NEA                        |
|   | HGY- 2750 D5 PRP | 16GY175L.PE5F  | 2200 | 2750 | EPA Tier2 Equivalent       |
|   |                  | 16GY175L.PL5F  |      |      | Low Nox                    |
|   |                  | 16GY175L.PF6F  |      |      | Fuel consumption optimized |
|   |                  | 16GY175L.PN6F  | 2400 | 2000 | NEA                        |
|   | HGY- 3000 D5 PRP | 16GY175L.PE6F  | 2400 | 3000 | EPA Tier2 Equivalent       |
|   |                  | 16GY175L.PFL6F |      |      | Low Nox                    |

#### POWER RESPONSIBILITY

MODELS | 50 Hz. DIESEL

| kWe  | kVA  | Emission                   |
|------|------|----------------------------|
| 1200 | 1500 | Fuel consumption optimized |
| 1400 | 1750 | Fuel consumption optimized |
| 1400 | 1750 | Low NOx                    |
| 1665 | 2081 | Fuel consumption optimized |
| 1873 | 2341 | Fuel consumption optimized |
| 2000 | 2500 | Fuel consumption optimized |
| 2136 | 2670 | Fuel consumption optimized |
| 2200 | 2750 | Fuel consumption optimized |
| 2400 | 3000 | Fuel consumption optimized |
|      |      |                            |

DCP

LTP

ESP

**60** 

| Generator        | Engine        | kWe  | Emission                   |
|------------------|---------------|------|----------------------------|
|                  | 12GY175L.EF4S |      | Fuel consumption optimized |
| HGY-1650 D6 ESP  | 12GY175L.EE4S | 1640 | EPA Tier2 equivalent       |
|                  | 12GY175L.EC4S |      | EPA Tier2 certified        |
|                  | 12GY175L.EF5S |      | Fuel consumption optimized |
| HGY-1850 D6 ESP  | 12GY175L.EE5S | 1845 | EPA Tier2 equivalent       |
|                  | 12GY175L.EC5S |      | EPA Tier2 certified        |
|                  | 12GY175L.EF6S |      | Fuel consumption optimized |
| HGY-2050 D6 ESP  | 12GY175L.EE6S | 2061 | EPA Tier2 equivalent       |
|                  | 12GY175L.EC6S |      | EPA Tier2 certified        |
| HGY-2200 D6 ESP  | 12GY175L.EF7S | 2210 | Fuel consumption optimized |
|                  | 16GY175L.EF6S |      | Fuel consumption optimized |
| HGY- 2400 D6 ESP | 16GY175L.EE6S | 2400 | EPA Tier2 Equivalent       |
|                  | 16GY175L.EC6S |      | EPA Tier2 Certified        |
|                  | 16GY175L.EF7S |      | Fuel consumption optimized |
| HGY- 2600 D6 ESP | 16GY175L.EE7S | 2600 | EPA Tier2 Equivalent       |
|                  | 16GY175L.EC7S |      | EPA Tier2 Certified        |
| HGY- 2800 D6 ESP | 16GY175L.EF8S | 2800 | Fuel consumption optimized |

PRP

DCP

| HGY-1350 D6 PRP  | 12GY175L.PF2S | 1345 | Fuel consumption optimized |
|------------------|---------------|------|----------------------------|
| HGY-1550 D6 PRP  | 12GY175L.PF3S | 1550 | Fuel consumption optimized |
| HGY-1650 D6 PRP  | 12GY175L.PF4S | 1642 | Fuel consumption optimized |
| HGY-1850 D6 PRP  | 12GY175L.PF5S | 1847 | Fuel consumption optimized |
| HGY-2050 D6 PRP  | 12GY175L.PF6S | 2063 | Fuel consumption optimized |
| HGY- 2200 D6 PRP | 16GY175L.PF5S | 2200 | Fuel consumption optimized |
| HGY- 2400 D6 PRP | 16GY175L.PF6S | 2400 | Fuel consumption optimized |
| HGY- 2600 D6 PRP | 16GY175L.PF7S | 2600 | Fuel consumption optimized |
|                  |               |      |                            |

| HGY-1350 D6 DCP | 12GY175L.DF2S | 1345 | Fuel consumption optimized |
|-----------------|---------------|------|----------------------------|
|                 | 12GY175L.DF3S |      | Fuel consumption optimized |
| HGY-1550 D6 DCP | 12GY175L.DE3S | 1550 | EPA Tier2 equivalent       |
|                 | 12GY175L.DC3S |      | EPA Tier2 certified        |
|                 | 12GY175L.DF4S |      | Fuel consumption optimized |
| HGY-1650 D6 DCP | 12GY175L.DE4S | 1642 | EPA Tier2 equivalent       |
|                 | 12GY175L.DC4S |      | EPA Tier2 certified        |
|                 | 12GY175L.DF5S |      | Fuel consumption optimized |
| HGY-1850 D6 DCP | 12GY175L.DE5S | 1847 | EPA Tier2 equivalent       |
|                 | 12GY175L.DC5S |      | EPA Tier2 certified        |
|                 | 12GY175L.DF6S |      | Fuel consumption optimized |
| HGY-2050 D6 DCP | 12GY175L.DE6S | 2063 | EPA Tier2 equivalent       |
|                 | 12GY175L.DC6S |      | EPA Tier2 certified        |

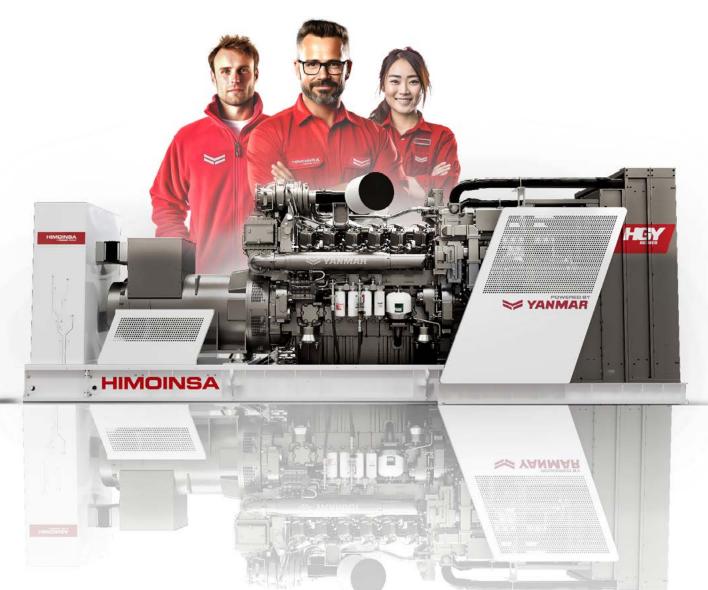
| JHZ. |  |
|------|--|
| SEI  |  |
| OLL  |  |

| Generator        | Engine        |
|------------------|---------------|
|                  | 16GY175L.DF5S |
| HGY- 2200 D6 DCP | 16GY175L.DE5S |
|                  | 16GY175L.DC5S |
|                  | 16GY175L.DF6S |
| HGY- 2400 D6 DCP | 16GY175L.DE6S |
|                  | 16GY175L.DC6S |
|                  | 16GY175L.DF7S |
| HGY- 2600 D6 DCP | 16GY175L.DE7S |
|                  | 16GY175L.DC7S |

| HGY-1350 D6 LTP  | 12GY175L.SF2S |
|------------------|---------------|
|                  | 12GY175L.SF3S |
| HGY-1550 D6 LTP  | 12GY175L.SE3S |
|                  | 12GY175L.SC3S |
|                  | 12GY175L.SF4S |
| HGY-1650 D6 LTP  | 12GY175L.SE4S |
|                  | 12GY175L.SC4S |
|                  | 12GY175L.SF5S |
| HGY-1850 D6 LTP  | 12GY175L.SE5S |
|                  | 12GY175L.SC5S |
|                  | 12GY175L.SF6S |
| HGY-2050 D6 LTP  | 12GY175L.SE6S |
|                  | 12GY175L.SC6S |
|                  | 16GY175L.LF5S |
| HGY- 2200 D6 LTP | 16GY175L.LE5S |
|                  | 16GY175L.LC5S |
|                  | 16GY175L.LF6S |
| HGY- 2400 D6 LTP | 16GY175L.LE6S |
|                  | 16GY175L.LC6S |
|                  | 16GY175L.LF7S |
| HGY- 2600 D6 LTP | 16GY175L.LE7S |
|                  | 16GY175L.LC7S |

| COP | HGY-1150 D6 COP  | 12GY175L.CF1S |
|-----|------------------|---------------|
|     | HGY-1350 D6 COP  | 12GY175L.CF2S |
|     | HGY-1550 D6 COP  | 12GY175L.CF3S |
|     | HGY-1650 D6 COP  | 12GY175L.CF4S |
|     | HGY- 1800 D6 COP | 16GY175L.CF2S |
|     | HGY- 2000 D6 COP | 16GY175L.CF3S |
|     | HGY- 2150 D6 COP | 16GY175L.CF4S |
|     | HGY- 2200 D6 COP | 16GY175L.CF5S |
|     |                  |               |

POWER RESPONSIBILITY




| kWe  | Emission                   |
|------|----------------------------|
| 2200 | Fuel consumption optimized |
|      | EPA Tier2 Equivalent       |
|      | EPA Tier2 Certified        |
| 2400 | Fuel consumption optimized |
|      | EPA Tier2 Equivalent       |
|      | EPA Tier2 Certified        |
| 2600 | Fuel consumption optimized |
|      | EPA Tier2 Equivalent       |
|      | EPA Tier2 Certified        |
|      |                            |

| 1345 | Fuel consumption optimized |
|------|----------------------------|
|      | Fuel consumption optimized |
| 1550 | EPA Tier2 equivalent       |
|      | EPA Tier2 certified        |
|      | Fuel consumption optimized |
| 1640 | EPA Tier2 equivalent       |
|      | EPA Tier2 certified        |
|      | Fuel consumption optimized |
| 1845 | EPA Tier2 equivalent       |
|      | EPA Tier2 certified        |
|      | Fuel consumption optimized |
| 2061 | EPA Tier2 equivalent       |
|      | EPA Tier2 certified        |
|      | Fuel consumption optimized |
| 2200 | EPA Tier2 Equivalent       |
|      | EPA Tier2 Certified        |
|      | Fuel consumption optimized |
| 2400 | EPA Tier2 Equivalent       |
|      | EPA Tier2 Certified        |
|      | Fuel consumption optimized |
| 2600 | EPA Tier2 Equivalent       |
|      | EPA Tier2 Certified        |
|      |                            |

| 1130 | Fuel consumption optimized |
|------|----------------------------|
| 1345 | Fuel consumption optimized |
| 1550 | Fuel consumption optimized |
| 1642 | Fuel consumption optimized |
| 1800 | Fuel consumption optimized |
| 2000 | Fuel consumption optimized |
| 2136 | Fuel consumption optimized |
| 2200 | Fuel consumption optimized |





#### **HEADQUARTERS:**

Ctra. Murcia - San Javier, km 23.6 | 30730 SAN JAVIER (Murcia) SPAIN TLF. +34 968 19 11 28 | +34 902 19 11 28

#### FACTORIES:

SPAIN • FRANCE • INDIA • CHINA • USA • BRAZIL • ARGENTINA

#### SUBSIDIARIES:

PORTUGAL | POLAND | GERMANY | UK SINGAPORE | UAE | PANAMA | DOMINICAN REPUBLIC ARGENTINA | SOUTH AFRICA | AUSTRALIA





HIMOINSA A YANMAR COMPANY

HIMOINSA reserves the right to change any feature without prior notice. The illustrations may include optional equipment and/or accessories. Not contractual images. The technical indications described in this brochure correspond to the information available at the moment of printing. © All rights reserved.